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FOREWORD 

This report describes the evaluation of a Parallel Block Implicit (PBI) integration tech- 
nique in a simplified missile trajectory. This project was carried out to ascertain the suit- 
ability of PBI techniques when modest amounts of parallelism are available; that is, when 
3 to 10 processors are allocated per missile trajectory. This work was performed in the SLBM 
Research and Analysis Division as a Systems Engineering Enhancement (SEE) project in 

fiscal year 1992. 
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ABSTRACT 

This report describes the evaluation of a Parallel Block Implicit (PBI) integration tech- 
nique in a simplified missile trajectory. This project was carried out to ascertain the suit- 
ability of PBI techniques when modest amounts of parallelism are available; that is, when 
3 to 10 processors are allocated per missile trajectory. The PBI technique was first evalu- 
ated on a serial mainframe computer before it was implemented in parallel on an INMOS 
TRANSPUTER with four parallel central processing units. While the serial implementation 
of the four-node PBI technique indicated that a speedup of a factor of three to four was 
possible with ideal hardware, in practice only a modest gain (approximately 30 percent) was 
obtained because of systems-related overhead. 
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INTRODUCTION 

From a hardware perspective parallel processing provides a natural way to greatly expand 
limited computational resources. This has given rise to a strong trend toward hardware 
parallelism; however, software is frequently unable to make efficient use of this parallelism. 
There are numerous reasons for this. First, as of early 1993, only rudimentary compilers 
exist for converting standard software into a suitable parallelized assembly language—there 
are, however, development efforts under way in this area for the Cray1 as well as other 
environments. Second, standards are somewhat lacking for parallelism in both the hardware 
and compiler arenas. This further compounds matters by tending to make parallel coding 
efforts nontransportable. On this standardization front there are, however, several bright 
prospects with Fortran 90 being a notable example.2 Third, for many hardware architectures 
parallel implementations have steep overhead requirements; consequently, if software is not 
well suited to the associated operating system and hardware environment then some parallel 
implementations can, in fact, consume more execution time than consumed by purely serial 
implementations. Finally, physical problems and engineering systems are quite frequently 
not amenable to parallelism and, if this is the case, 'smart' compilers and proper hardware 
can have only limited benefits. 

There are two standard software strategies for implementing parallelism. In the first 
strategy, one attempts to have large blocks of high-level code that run independently. This 
approach is labeled 'high-level parallelism.' In the second strategy, parallelism is worked 
directly into the problem definition at some basic level. This second approach is known as 
'low-level parallelism.' The potential applicability of both these approaches will depend on 
the combination of the hardware at hand, the problem under consideration, and the soft- 
ware engineering itself. If high-level parallelism is a viable strategy, it can frequently be 
implemented in a direct and straightforward way. For example, if one wishes to implement 
missile trajectory simulations (which is the main problem of interest here) and there are four 
completely independent processors available, one could directly implement one missile tra- 
jectory on each of the processors and obtain an approximate speedup of a factor of four with 
a minimal amount of effort—provided, of course, that neither data nor memory addressing 
problems arise. Given that such straightforward steps have been taken where appropriate, 
the following question arises: Can a better scheme be found or can additional parallelism be 
made use of? Low-level parallelism arises immediately in this context. For trajectory soft- 
ware the problem of how to attempt low-level parallelism is, however, enigmatic. This is not 
too surprising since trajectories themselves are serial in nature—the current 'position' and 
'velocity' depend directly on the 'position' and 'velocity' at any given past instant. Stated 
differently: All dynamical variables have a 'Christmas tree light' or serial-like dependence 
on their past values. Any successful low-level parallel trajectory integration scheme must be 
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robust enough to overcome the inherent penalty imposed by its nonserial nature. This report, 
then, analyzes what can be accomplished by applying low-level parallelism to trajectory 

modeling. 

Just as there are two basic software strategies for implementing parallelism, there are two 
basic strategies on the hardware front. Parallel hardware can thus be characterized by two 
extremes: 'small-scale' parallelism where four or so processors are involved and 'large-scale' 
or massive parallelism where 1000 or more processors are frequently used. It is perhaps worth 
noting that while massive parallelism is rapidly gaining favor as a preferred way to engineer 
up scale performance,3'4'5 the actual realized performance is frequently rather disappointing. 

The particular evaluation effort at hand is restricted to 'small-scale' parallelism. The 
reasons for this restriction are twofold: first, available hardware for testing was very re- 
stricted and, in fact, a TRANSPUTER board with four individual processing units mounted 
on a 286 personal computer was used*. Second, it is clear that the problem under study 
(individual missile trajectories) is manifestly unsuited for massive parallelism. One relatively 
straightforward way to make use of low-level parallelism is to simply use the vector nature of 
trajectory variables by assigning one computation per register; however, this approach has 
severe limitations and tends to over utilize overhead resources. The most promising approach 
to low-level trajectory parallelism that emerged in this study was the Parallel Block Implicit 
(PBI) technique. This technique was first implemented on a serial computer (CDC 875) 
for extensive test and evaluation. Since it performed as hoped by displaying considerable 
promise in the standard mainframe environment, it was then implemented on a 286-based 
INMOS TRANSPUTER with four processing elements—as mentioned earlier. Mr. Alvin 
Good of the SLBM Software Development Division (K50) performed the TRANSPUTER 
implementation based on the supplied formulation—this formulation is included as Appen- 
dix A. He subsequently performed a thorough timing evaluation. Overhead proved to be a 
problem for the PBI technique just as it has for all other attempts at low-level parallelism (in- 
cluding in-house attempts based on COGENT machines). There are strong indications that 
if hardware without undue overhead constraints becomes available then the PBI technique 
will perform as desired. 

This report contains a brief overview of parallel trajectory integration strategies, the 
merits of the PBI approach, a summary of procedures carried out in the present study, a 
synopsis of the test results obtained on the TRANSPUTER by Mr. Alvin Good of K50, 
and a summary of the findings. Appendix A contains mathematical implementation details 
for the PBI, as well as the Runge/Kutta (R/K), approach while Appendix B contains a 
derivation of the oblate gravity model used. It is worth noting that the PBI approach is not 
mentioned in standard text books and all the relevant PBI journal articles seem to predate 
the current trend toward parallelism.6*7-8 Thus part of the intent of this report is to draw 
wider attention to a noteworthy but somewhat underutilized integration technique. 

* When the TRANSPUTER boards are mounted on a 386 similar performance results, but 
there are many alternative transputer architectures.5 
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TRAJECTORY NUMERICAL INTEGRATION SCHEMES 

This section gives an overview of various relevant trajectory integration strategies and 
then discusses the background studies leading up to the choice of the PBI technique as the 
leading candidate for low-level parallelism. For missile trajectories of interest, a complicated 
engineering system is being simulated and thus large numbers of so called 'critical events' can 
be expected. Critical events tend to strongly reduce the efficiency of standard 'predictor- 
corrector' techniques9 and therefore R/K techniques naturally come under consideration. 
R/K techniques are 'self-starting' and thus can be easily adapted to problems where a large 
number of 'start-ups' arise from critical events. Unfortunately, R/K techniques are strongly 
serial in nature so they are not easily adapted to parallelism; moreover, the efficiency of R/K 
techniques in trajectory applications stems largely from this serial nature. Within certain 
specialized niches, existing R/K techniques do, however, have parallelization promise. For 
example, iterated implicit R/K techniques10,11 are, in general, worth examining in connec- 
tion with six degree of freedom (6-D) trajectory applications. Implicit R/K techniques are 
useful in situations where integration stability must be controlled; i.e., for a class of systems 
governed by so called 'stiff differential equations,'12 which includes 6-D trajectory models. 

Given the intrinsic difficulty of successfully parallelizing R/K approaches, alternative 
integration schemes came under consideration. Many new ideas surfaced as potentially in- 
teresting. Most of the approaches attempted to overcome the serial dependence associated 
with numerical integration midpoints. (For an example of this serial dependence see the 
fourth-order R/K procedure shown in Appendix A, Section II.) One alternative idea for an 
integration step procedure was to use polynomial fitting techniques. In this approach, one 
first uses a polynomial fit or other suitable basis set over a small interval in order to predict 
values for midpoint step locations. The resulting evaluations are then used in a function- 
alization integration step update procedure so as to complete the current integration step. 
Another alternative approach was based on the fact that geophysical collocation can be used 
to develop optimal integrators for geophysical quantities and these 'collocation integrators' 
are easily parallelized. In their realm of applicability, 'collocation integrators' are frequently 
more efficient than standard approaches because the covariance information used by 'col- 
location integrators' is more complete than the information used by standard quadrature 
integrators. Given this inherent efficiency, the hope was that such approaches could be 
adapted to replace standard trajectory numerical integrators. In particular, the idea was to 
use (geophysical) collocation-like techniques with covariance functions developed specifically 
for the integration task at hand as well as specific missile types under consideration so as 
to decouple midpoint step evaluations in the integration schemes. During the time these 
and a number of other ideas (such as Encke-based approaches and variation of parameters13) 
were under preliminary consideration, a thorough literature review turned up the PBI tech- 
nique and none of these alternatives were followed up.  The PBI technique has several of 
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the best features of the alternative approaches already directly built into it. Moreover, PBI 
techniques have the great advantage of having a proven efficiency that is comparable to ex- 
isting R/K techniques for serial implementations—something that could hardly be expected 
of any of the novel techniques listed previously (with the possible exception of geophysical 
collocation-like approaches). Perhaps the most significant aspect of the PBI technique is 
that it can be parallelized naturally. Further advantages of the PBI approach are discussed 

in the next section. 

PARALLEL BLOCK IMPLICIT APPROACH 

PBI techniques are discussed at length in the original literature7,8 and a complete imple- 
mentation description is given in Appendix A, Section III (which is based on a synopsis found 
in Reference 11). Further, since the main body of this report is introductory in nature, only 
a descriptive treatment is given in this section. PBI techniques contain a certain number 
of so-called nodes which are analogous to the midpoint evaluations of ordinary integration 
schemes except that they are completely independent and so can be evaluated in parallel. 
By subjecting these node points to a form of iteration, or iterative improvement, solutions of 
high order result. (The order of an integration scheme and other standard numerical analysis 
terms are defined in standard textbook references.9) When PBI techniques are compared with 
R/K techniques they generally involve more computations per integration step, but because 
of their greatly increased order of integration one can take much larger integration steps. 
In general for serial applications, because of these two offsetting factors, PBI techniques are 
roughly as efficient as R/K techniques. Any gain in PBI efficiency due to parallelism will 
thus result in direct improvements in comparison with R/K techniques. A mathematical 
description of four-node PBI techniques can be found in Section III of Appendix A. Paral- 
lelism arises in the PBI approach from the fact that, for each iteration of equations (A-13), 
(A-14), (A-15) and (A-16), the main trajectory evaluations are independent; that is, F(l,s), 
F(2,s), F(3,s), and F(4,s) can be evaluated on independent processors for each given value 

of s. 

PBI techniques were judged as worth exploring, in part because of the following notewor- 
thy features: (1) PBI techniques are inherently parallel. For example, the four-node iterative 
PBI system implemented uses four concurrent 'function' evaluations and thus is naturally 
suited to the use of four simultaneous, more or less equally loaded, processors. Furthermore, 
if each of the 3 vector components of position and velocity are assigned dedicated processors 
then 12 processors can, in theory, be efficiently utilized. In addition, PBI techniques exist 
for various numbers of nodes. (2) PBI techniques are of high order. The four-node PBI 
technique implemented is of order seven while most standard in-house R/K methods are of 
order four. (3) All the final node points are also accurate trajectory evaluation points so 
one can easily use them as interpolation points or as trajectory output points. (4) When 
implemented in serial, PBI techniques are roughly as efficient as R/K techniques.   There 
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is thus only a nominal penalty to overcome in using a PBI technique in place of a R/K 
technique. (5) PBI techniques are compatible with Encke techniques which are frequently 
used in conjunction with R/K techniques to enhance their efficiency. (6) The 'step size' can 
be varied at will from one integration cycle to the next. (7) PBI techniques are relatively 

easy to implement. 

From this list it is clear that PBI techniques have a number of desirable traits. Thus, 
for example, points (3) and (6) when taken in conjunction mean that one can easily handle 
interrupts for critical events without greatly hampering the algorithm's efficiency—this is 
an important point since many otherwise efficient integration schemes are of rather limited 
SLBM utility because of it. PBI techniques may be tentatively considered the 'bench mark 
standard' by which other attempts at low-level trajectory numerical integration parallelism 
should be judged. The relative merits of the PBI approach are not, however, completely 
clear-cut. For example, while the chosen PBI implementation is seventh-order, there are only 
five usable interpolation points per integration cycle. In addition to limiting the accuracy of 
critical event predictions (i.e., item number (3)), this could make the algorithm somewhat less 
accurate when time-dependent forces are included. Time-dependent forces occur in practice 
when thrust tables are introduced. Thus, if the PBI technique is to be put to practical 
use it may have to be extended to handle explicit time dependence better. A preliminary 
examination suggests such modifications can be readily implemented when and if required. 

The two primary issues in evaluating the merits of the PBI approach are the relative 
efficiency and accuracy of the technique and the suitability of the technique to available 

hardware. 

TESTING RESULTS 

To properly evaluate numerical algorithm efficiency and accuracy one must do compar- 
isons relative to other schemes; consequently, the first step in this study was to compare 
the PBI techniques to a standard fourth-order R/K technique. This part of the study was 
performed with a test bed trajectory model implemented on a serial mainframe computer. 
After this mainframe testing phase was carried out, the second part of the testing phase 
involving a parallel TRANSPUTER implementation was performed. The results of both 
phases of testing should be born in mind when forming an assessment of the suitability of 
the PBI technique in the context of other uses. Available hardware was somewhat limited 
in the TRANSPUTER testing phase. 
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PROTOTYPE TRAJECTORY TESTING STAGE 

First a 'test bed trajectory model' was developed. This test bed trajectory model was 
a 'synthetic' trajectory model implemented on a standard serial computer and served as a 
simplified test platform for parallel numerical integration techniques. This model was devel- 
oped with a simplified vacuum and atmospheric trajectory reentry phase and also included 
the ability to model either tesseral or oblate gravity for all phases of flight. In addition, a 
simple thrust boost model was included but was not used in this study. Both a standard 
fourth-order R/K and four-node PBI integration technique were then implemented m this 
model. Comparison studies of these two integration schemes were carried out for both the 
vacuum and reentry phases of flight with both the oblate and tesseral gravity models. The 
PBI technique was found to be capable of taking integration steps that are between three 
and four times as large as the R/K technique. For an ordinary serial computer this means 
that the PBI technique is roughly as efficient as the R/K technique since, for example, the 
four-node PBI technique involves four times as much computation per step. However, on a 
parallel computer of the right architecture (i.e., a four-element system with low overhead), 
the four-node PBI technique should run four times as fast. Similar types of ratios should hold 
for PBI schemes with higher numbers of nodes if operating system overhead is low; i.e., a six- 
node PBI scheme should be roughly six times as fast with the proper architecture. Testing 
on serial computers thus indicated that PBI performance was as indicated in the technical 
literature.7,8-n The next step was to determine if the speedup of a factor of three and a 
half could actually be realized for available parallel computer systems. Toward that end, 
the test bed model was simplified even further and a corresponding formulation was written 
for Fortran code (see Appendix A). These products were then passed to K50 personnel who 
then performed the implementation and timing studies on the TRANSPUTER. 

TRANSPUTER TESTING STAGE 

While the theoretical limit of efficiency of the PBI technique as implemented is a speedup 
of a factor of four, there is a hardware-imposed theoretical speedup limit of a factor of three 
due to limitations of the four-element TRANSPUTER architecture employed. Moreover, 
with a four-element TRANSPUTER architecture even this limit of three is very hard to 
approach in low-level parallelism experiments because of hardware overhead considerations. 
In fact, any part of the trajectory that is not in parallel remains in full-time residence on at 
least one element and ties up system resources. Since the PBI integration technique is tied 
to trajectory architecture and a general-purpose study was intended, it was decided early on 
that K50 would implement only an oblate gravity force module and that more sophisticated 
force model aspects (i.e., tesseral gravity, thrust tables, aerodynamic forces, etc.) were to be 
'emulated' (at least for timing study purposes) by looping through the oblate gravity routine 
repeatedly. More precisely, the requisite 'timing emulation loops' were placed internally to 
Section Il.d (or Ill.d) of Appendix A, but outside all the computations in that section so as to 
perform the same computation repeatedly. For such comparison studies, typically 25 to 2000 
loops might be expected to emulate various levels of complexity found in standard trajectory 

models. 
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Timing studies were conducted on the complete trajectories including the parts that were 
outside the integration loop and so not in parallel. Because of overhead, the PBI technique 
actually took more time than a serial implementation for 1 to 10 'timing emulation loops.' 
This result was expected. At 35 loops the four-node TRANSPUTER implementation took 
24 percent less time than the serial implementation. This 24 percent less time amounts to 
a speedup of a factor of 1.31, which was an encouraging result. However, not much greater 
efficiency was obtained as the number of loops was increased—at 2000 loops there was a 29 
percent savings. This corresponds to a speedup of a factor of 1.42. To check the hypothesis 
that TRANSPUTER overhead was hampering the PBI efficiency timing marks were set 
around just that part of the code which was explicitly parallelized (i.e., the oblate gravity 
routine). This experiment confirmed this hypothesis—for example, with 2000 loops around 
the oblate gravity computations a speedup of a factor of 2.85 was obtained. Here the factor of 
2.85 is close to the theoretical limit of a factor of 3 previously mentioned. Given the overhead 
requirements of available in-house hardware, it seems that only modest gains can be expected 
from any form of low-level parallelism with the TRANSPUTER architecture used. The main 
question arising here is whether a new TRANSPUTER architecture (i.e., one employing 
more processing elements) could be employed so as to greatly lessen overhead problems— 
unfortunately such hardware-specific issues were outside the scope of the present study. 

SUMMARY AND CONCLUSIONS 

In summary, while the serial mainframe implementation indicated that a speedup of a 
factor of around 3.5 was quite possible with ideal parallel hardware, only a modest speedup of 
about 1.3 was obtained with the hardware at hand because of systems-related overhead. The 
problem of systems-related overhead is by no means limited to the hardware and software 
tested in the present low-level parallelism study, but has been found to be pervasive. By using 
redundant computational resources, it should be possible to circumvent overhead problems. 
The speedup of 2.85 obtained in the special experiment mentioned in the last section seems 
to lend strong support to this hypothesis. Given the current hardware overhead situation, it 
seems that the most efficient available strategy is to stick with high-level parallelism whenever 
possible. The PBI approach itself is, however, worth considering as a substitute for certain 
R/K applications. 
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I. INTRODUCTION/GENERAL PROGRAM STRUCTURE 

This formulation is intended for implementation on a parallel computer and is designed 
to test out the efficiencies of a candidate integration procedure for trajectory parallelism (the 
Parallel Block Implicit (PBI) integration algorithm) against a commonly used serial proce- 
dure (fourth-order Runge/Kutta (R/K)). Since the relative efficiencies of the two schemes 
are to be compared, both must be independently implemented and timing runs must then 
be conducted on both implementations. This formulation thus, in reality, consists of two 
independent trajectory formulations. The (serial) R/K consists of Sections Il.a through Il.d 
of the formulation, while the PBI formulation consists of Sections IILa through IILd. (Here 
Section III d is identical to Section Il.d and as such is not reproduced.) Sections Il.a and IILa 
share 'common code,' which can be reused as noted explicitly in Section IILa. Both 'major 
sections' of the formulation (Section II and Section III) are sufficiently straightforward as to 
warrant only several minor additional comments. 

With regards to the 'R/K formulation' (Section II) the 'Initial Condition (I.C.) Module' 
(Section Il.a) and the 'R/K Integration Module' (Section Il.b) are the two major modules 
with the I.C. Module being called first. Also the 'Three Force Module' (Section II.c) and 
the 'Oblate Gravity Module' (Section Il.d) are called from the 'R/K Integration Module' 
(Section Il.b). These last two modules are formulated as 'function calls' for convenience 
(i.e., Section II.c is formulated as FThTee(- • •) while Section Il.d is formulated as Gobn{- '•))■ 
The R/K used is a standard text book fourth-order one—a mathematical description of the 
equations used can be found in the main introduction to the 'R/K formulation' (Section II). 

With regards to the 'PBI formulation' (Section III) the 'I.C. Module' (Section IILa) 
and the 'PBI Integration Module' (Section IILb) are the two major modules with the I.C. 
Module being called first. The 'Six Force Module' (Section III.c) and the 'Oblate Gravity 
Module' (Section IILd or Section Il.d) are called from the 'PBI Integration Module' (Section 
III b). These last two modules are formulated as 'function calls' for convenience [i.e. Section 
III.c is formulated as F.te(- • •) while, as noted above, Section IILd or Il.d is formulated as 
Gobiti- • •) ]• A mathematical description of the equations used for the PBI technique can be 
found in the main introduction to the 'PBI formulation' (Section III). 

A-4 



NSWCDD/TR-94/217 

II. RUNGE/KUTTA (R/K) IMPLEMENTATION 

The second order differential equation to be integrated is 

x = f(i,x,v), (A-l) 

where three-vectors are shown in boldface type (i.e., x and v are three-vectors while f is a 
vector valued function). Equation (A-l) must be integrated in a step-by-step fashion. It is 
standard practice to introduce a 'running index,' say * to indicate the present step of the 
integration process. (It is not necessary to dimension variables for this index—all that is 
required is to simply make sure that the 'new' or 'updated values' [i.e., the (i + l)'th values] 
are distinguished from the 'current values' of the appropriate registers [i.e., the t'th values].) 
The standard fourth-order R/K update equations are 

x,-+i = x, + hvi + |(m0 + mx + m2) (A-2) 

vi+1 = v,- + |(mo + 2m! + 2m2 + m3), (A-3) 

where 

m0 = Äf(*,-,xi,v,-) (A-4) 

mi = ht(ti + f, x, + |vt-, v,- + |m0) (A-5) 

m2 = M(U + |,x,- + |v,- + |mo,v,- + JmO (A-6) 

m3 = hf(ti+1, xt- + hv{ + fmx, v,- + m2) (A-7) 

and ,A    v 

*.-+! = *.- + I- (A-8) 

A-5 
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a.   R/K INITIALIZATION MODULE 

This module (or 'SUBROUTINE') sets up initial conditions or 'input' values for the 
R/K integration software. In all the sections that follow, the dimensions of variables or 
constants are denoted by appending subscripts and square brackets. The subscripts denote 
the size of dimension required explicitly. (Thus [x3] means that x is a 'three-vector' or array 
of dimension three.) Undimensioned variables are shown in the input-output list without 
brackets. All variables in the input-output lists are of type REAL unless otherwise noted. 

PURPOSE OF MODULE: This module sets up initial conditions for R/K variables and 

constants. 

INPUT: None 

OUTPUT (CONSTANTS): [Xo3] , [V0a] ,a0,a2,T0,Tend,Hs!* 

The following values (in engineering units) are set up when this module is called (other units 
or more exact values can be substituted if required [see Appendix B]): 

a0 = -.1407643 x 1017 

a2 = -.71110 x 1012. 

Reasonable test values must also be supplied for the following variables (it is assumed that 
the origin of the coordinate system is at the earth's center and that the z-axis is along the 
polar direction): 

{appropriate 
input values 

(in feet) 

appropriate 
> ,        V0 = {      input values 

(feet per second) 

To = input (in seconds) 

Tend = input (in seconds) 

Hg{£ = 1  or input (in seconds). 

{ End of Module} 
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b.   R/K TRAJECTORY INTEGRATION MODULE 

This module (or 'SUBROUTINE') is the main R/K integration module. (See the com- 
ments given in Section Il.a for variable and constant sizing conventions.) 

PURPOSE OF MODULE: This module integrates position and velocity vectors by applying 
equations (A-2) through (A-8). The governing differential equation is equation (A-l). 

INPUT (CONSTANTS): [X„3], [V„3] ,T0,Tend,Hs/* 

OUTPUT (PRINT OUT ONLY): r,[X3],[V3] 

VARIABLES ('LOCAL'): T, [X3], [V3], [F3], [m„3] , [mj , [m2s] , K] 

First initialize time, position and velocity variables: 

T = T0 

X = X0 

V = V0. 

Next set up 'main do loop': 

Begin Loop: Do until T > Tend 

h - uRlK 
h
 = HSteP 

i,+i = T + h. 

Next calculate the 'three-force' (i.e., 'CALL' Section II.c): 

F = FT/lree(T,X,V). 

Evaluate the right-hand side of equations (A-4), (A-5) and (A-6): 

m0 = h¥ 

F = FThree(T + |, X + |V, V + |mo) 

F = FrwCT + |,X + f V + |m0, V + Jim) 
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F = FrÄree(*,-+1,X + ÄV + f rru, V + m2) 

m3 = AF. 

Update X: Replace X by 

X + ÄV + |(m0 + mi + m2). 

(Operationally this is a two-step process [ Xnew = X + KV + |(m0 + m1 + m2) and 
X = Xnew] that can be performed in a single step in most programming languages.) 

Similarly update V: Replace V by 

V + J(mo + 2mi + 2m2 + m3). 

Update T: Replace T by T + h (i.e., T = T + h). 

Next print the output variables: 

PRINT OUT:   T, X and V. 

Finally branch back to the 'main do loop entry point.' 

End test on T. 

{ End of Module} 

A-8 



NSWCDD/TR-94/217 

c.   R/K THREE-FORCE MODULE (Fjw) 

This module (or 'SUBROUTINE') calculates three-force. 

PURPOSE OF MODULE: In the governing differential equation (equation (A-l)) a force 
evaluation occurs on the right-hand-side. This module evaluates that force as required by 

R/K numerical integration. 

INPUT: T,[X3],[V3] 

OUTPUT: FThree 

VARIABLES ('LOCAL'): [G3] 

First call the oblate gravity evaluator (i.e., 'CALL' Section Il.d): 

G = Gotzt(X). 

Next set up the value of FThree and return: 

Fj/iree = G . 

{ End of Module} 
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d.   R/K OBLATE GRAVITY MODULE (Gout) 

This module (or 'SUBROUTINE') calculates oblate gravity at a given position (i.e., the 
specified position vector R). Appendix B provides a derivation of the equations implemented 

in this section. 

PURPOSE OF MODULE: In the governing differential equation (equation (A-l)) a force 
evaluation occurs on the right-hand-side. This module evaluates the gravitational part of 
that force as required by R/K (or PBI) numerical integration. 

INPUT: [R3] 

OUTPUT: Gout 

INPUT (CONSTANTS): a0,a2 

VARIABLES ('LOCAL'): [G3],R,GA,GB 

First calculate the magnitude of the vector R: 

R = yjRl + R\ -f R 

where ( R  \ 

R = I R2  >■ 
(Rs) 

Next calculate intermediates: 
O0-O2 

GA"~RT 
'$Rl 

Calculate the gravity components: 

G\ = R\ ■ GB 

Gz = i?2 • GB 

G3 = Rz • (GB - 2GA), 

where , ~ 

G=\ G\ 
(G3 

Next set up the values of Gout and return: 

Gout = G. 

{End of Module} 

[End of R/K Formulation] 
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III. PARALLEL BLOCK IMPLICIT (PBI) IMPLEMENTATION 

As noted in Section II, the second order differential equation to be integrated is 

x = f(i,x,v), 

where three-vectors are shown in boldface type (i.e., x and v are three-vectors while f is 
a vector valued function). Equation (A-l) should be contrasted with the usual equation 
treated directly by most numerical integration procedures: 

!-'<'■*>• 
(A-9) 

Equation (A-9) is first order (instead of second order) and it treats only the 'one-dimensional' 
case. For standard numerical integration schemes it is a simple matter to treat higher- 
dimensional cases (as in equation (A-l))—in effect all that is necessary is to replace the 
scalar quantities in equation (A-9) by the appropriate vector-valued ones. The other 'defect' 
can also be overcome easily. A second order differential equation can be recast in the form 
of a first order differential equation by simply treating x and x as independent quantities 
[which doubles the number of arguments in equation (A-9)]. The above strategy is used in 
the PBI implementation given in this section. This means that we must deal with a 'six- 
vector' implementation rather than the 'three-vector' implementation given in Section II. 
The following paragraph should help clarify the mathematical details. (In Section III the 
'running index,' which indicates the present step of the process, is implicitly understood 
and as such does not appear in either the mathematical equations or the formulation [except 
indirectly during the update to the 'state vector'].) Whereas three-vectors have been denoted 
simply by boldface type, six-vectors will be denoted by boldface type with top arrows. 

Let the 'generalized position vector' (i.e., the 'state vector') and 'generalized force' (i.e., 
the 'six-force') be defined as follows: 

x \ 

Y= I >     and     F = < 
•x 

V. 'y 

vx 

L y 

lF2J 

where (s, y, x) are the components of position, (««, vy, vz) are the components of velocity and 
(Fx,Fy,F2) are the components of (three) force. Then F = ma = mX becomes 

</Y 
dt 

= F = F(*,Y) (A-10) 
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PBI equations are given in terms of Y(r, s) where r is the node number (r = 1,2,3, or 4 and 
is a sort of 'running index' within a given integration cycle) and s is the iteration number 
(s = 0 to start, then a = 1,2,3 and [finally] 4). 'Position' and time depend on the iteration 

number: Y = Y(r,5), t = t(r). Let F(r>«) = F (t(r),*(r,*)), then the PBI integration 

equations are given below (where Y0 is the starting value of Y for the given integration 

cycle V 
Y(r,0) = Yo + r-/l-F(r,0), (A-ll) 

where r = 1,2,3,4 and _ 
F(r,0) = F(t(r),Yo). 

Next iterate the following set of equations for 5 = 1 to 4: 

Y(l,5 + l) = Yo + 4{251Fo + 646F(l,5)-264F(2,5) + 106F(3,5) 

-19F(4,6)}    (A-12) 

Y(2, s + 1) = Yo + £{29F0 + 124^(1,*) + 24F(2, s) + 4F(3, *) - F(4, s)} (A-13) 

Y(3,5 + l) = Yo + |{9Fo + 34F(l,5) + 24F(2,5)+14F(3,S) -F(4,5)} (A-14) 

Y(4,5 + 1) = Yo + |{7F0 + 32F(M) + 12F(2,5) + 32F(3,5) + 7F(4,5)}   (A-15) 

where _       _ 
Fo = F(0,0). 

This completes one full integration step. To perform the next integration step set 

Y0 = Y(4,5) (A-16) 

and apply the same procedure again (starting with equation (A-ll)). 

The reader may have observed that since six-vectors are used in the above equations one 
can achieve parallelism by simply allocating a 'computation node' to each of the six inde- 
pendent components. This is indeed one strategy for implementing parallejism; however, the 
favored approach arises from observing that F(M),F(2,5),F(3,s) and F(4,s) are compu- 
tationally independent during the iteration of equations (A-12), (A-13), (A-14) and (A-15) 
and, as such, each equation can be assigned to a specific (and independent) 'computational 

node.' 
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a.   PBI INITIALIZATION MODULE 

This module (or 'SUBROUTINE') sets up initial conditions or 'input' values for the PBI 
integration software. Much of the beginning of this section is identical to Section H.a. (As in 
Sections Il.a through Il.d, the dimensions of variables or constants are denoted by appending 
subscripts and square brackets within this and the following sections. The subscripts indicate 
the size of dimension required explicitly. {Thus [x3] means that x is a 'three-vector' or array 
of dimension three.} Undimensioned variables are shown in the input-output list without 
brackets. All variables in the input-output lists are of type REAL unless otherwise noted.) 

PURPOSE OF MODULE: This module sets up initial conditions for PBI variables and 

constants. 

INPUT: None 

OUTPUT (CONSTANTS): [Xo3] , [V<,3], a0, a2, T0, Tend, #£?/, [&,], [CAXA] 

The following values (in engineering units) are set up when this module is called (other units 
or more exact values can be substituted if required [see Appendix B]): 

a0 = -.1407643 x 1017 

a2 = -.71110 xlO12. 

Reasonable test values must also be supplied for the following variables (it is assumed that 
the origin of the coordinate system is at the earth's center and that the 2-axis is along the 
polar direction): 

{appropriate ^ 
input values > ,        V0 = < 

(in feet)    J 

appropriate 
input values 

(feet per second) 

To = input (in seconds) 

Tend = input (in seconds) 

Most of the above is identical to Section Il.a (of course H$£ is not set since it is not used 
in this module). 

Next set up constants indigenous to the PBI integration technique itself: 

TjPBI   _   I 
HsteP - *■■ 
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(Notice that the PBI 'step size' [H%%] here is basically four times the R/K step size since 
the node number used is four here [i.e., Section II].) 

*i = !,        £* = g,       ^ = 3(i),        2fc = 2(£) 

Ci.i=   !g,   cli2 = -(!)' ^.3=   S>   ^ = -(ä) 

C2,l =        W'        ^2,2 =        |g» ^2,3 =        §5» ^2,4 = - (s) 

G»,i = 3(g),   C3l2 = 3(|),     C3)3 = 3(i),   (73,4 =-3 (i) 

^4.1 = 2 (g),   C4)2 = 2 (g),     C4,3 = 2 (g),   C4>4 = 2 (i) 

Next perform a 'consistency check:' 

4 

k=i 
4 

5i = ^Cfcj;    forj = 1,2,3,4. 

Print the results and exit this module: 

Print   So,Si,S2,S3,S4. 

{ End of Module} 
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b.   PBI TRAJECTORY INTEGRATION MODULE 

This module (or 'SUBROUTINE') is the main PBI integration module. 

PURPOSE OF MODULE: This module integrates position and velocity vectors by applying 
equations (A-2) through (A-7). The governing differential equation is equation (A-l). 

INPUT (CONSTANTS): [X0s] , [V0s] ,TQ,Tend,[B4],[C4x4] 

OUTPUT (PRINT OUT ONLY): T, [Y*6X4 

VARIABLES ('LOCAL'): [tRi] , [Y^ ? 

-* 
Y 5 F ■*■ ri6 , FK6X4 , [S4], [Ye], [F6] 

First initialize time and the 'state vector' (position and velocity variables): 

Xo(l) ^ 
Xo(2) 
Xo(3)  y 

Vo(l) f 
Vo(2) 

I V0(3) 

Y= < 

where Xo(fc) = [Xo]* for k = 1,2,3 (and similarly for V0). 

Next set up 'main do loop': 

Begin Loop: Do until T > Tend 
T = tp 

rPBI h = Hstep 

Next calculate the 'six-force' (i.e., 'CALL' Section III.c) 

Set 

Set 

F = FaiI(r,Y). 

tR(k) = tp + k-h       for   k = 1,2,3,4. 

YA(t,ib)=:Y(0 + *-A-F(0 

for k = 1,2,3,4 and i = 1,2,3,4. 
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Set _ ^ 
Yn=Y,       Fn = F. 

Next perform the iterative improvement (built into the PBI technique): 

Begin loop / = 1 to 4 (this is an implicit loop—i.e., / is not used explicitly): 

Begin loop K = 1 to 4: 

Set 
Y(J) = Y(J,üO;/=l,2,-.-,6 

T = tR(K) 

F = fWr,Y) 
Fß(7,70 = F(7);7 = l,2,---,6. 

End loop K. 

Calculate YR(I,K) = [YR]I,K ■ 

4 

YÄ(/, K) = Yn(7) + h-BK- Fn( J) + hJ2 CK,J?R(I, J) 
J=I 

for 1= 1,2,3,---,6; üf = 1,2,3,4. 

End loop /. 

Update time and the 'state vector' (i.e., Y): 

<P = tR(A) 

Y(/)=Y(7,4)    ,7 = 1,2,3,-.•,6. 

Next print the output variables: 

PRINTOUT:    T and YR . 

Finally branch back to the 'main do loop entry point:' 

End test on T. 

{ End of Module} 
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PBI SIX-FORCE MODULE (Fsix) 

This module (or 'SUBROUTINE') calculates 'six-force.' 

PURPOSE OF MODULE: If the governing set of second order differential equations (i.e., 
equation (A-l) in vector form) is recast as a set of first order differential equations (i.e., 
equation (A-9) in vector form) a 'six-dimensional' force (or 'six-force') evaluation occurs on 
the right-hand side. This module evaluates that force as required by the PBI numerical 

integration procedure. 

INPUT: [X3] 

OUTPUT: SIX6 

VARIABLES ('LOCAL'): [Y6],[G3],[Z3] 

First set up the call variables for the oblate gravity evaluator 

x2 

Yx 
> = < Y2 

Y3 -3 ) 

and then actually 'CALL' Section IILd or Il.d: 

G = Gowt(X, G). 

Next set up the value of Fst-r and return: 

Y5 

F    = < Ye 

G2 

G3, 

{ End of Module} 

A-17 



NSWCDD/TR-94/217 

d.   PBI OBLATE GRAVITY MODULE (G0i,/t—same as Section Il.d) 

This module (or 'SUBROUTINE') calculates oblate gravity. This section is identical to 
Section Il.d and is not reproduced here to eliminate redundancy—reproduce the coding for 

Section Il.d and insert it here. 

[End of PBI Formulation] 
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APPENDIX B 

OBLATE GRAVITATIONAL MODEL DERIVATION 

B-l/B-2 



NSWCDD/TR-94/217 

OBLATE GRAVITATIONAL MODEL DERIVATION 

This appendix derives the oblate gravitational model and constants found in Appendix A. 
Toward that end, first consider a spherical harmonic series expansion for the Earth's external 
gravitational potential.8"1 ,B"2 The gravitational acceleration, G, can then found by taking 
the gradient of the potential (V): 

G = W. (B-l) 

Notice that 'gravitational acceleration' does not include centrifugal force terms.8"1 (One 
would expect centrifugal terms not to be included in the gravitational model here since in- 
ertial coordinate frames are implicitly assumed throughout this report.) Physicists do not 
commonly make the distinction between gravity and gravitation that geophysicists make,8"1 

since it is always obvious from the physical context whether centrifugal forces are to be 
included or not. In this appendix the distinction between gravitation and gravity is main- 
tained; however, elsewhere in the text the more customary phrase 'oblate gravity model' is 
used in place of the (geophysically) correct term 'oblate gravitational model.' It is also worth 
noting that the sign convention on the right-hand side of equation (B-l) is the one commonly 
used by geophysicists3"1,8"2 and it differs from the one commonly used by physicists. The 
sign convention of equation (B-l) is adhered to throughout the report. 

For an oblate gravitational model, it is only necessary to retain the first two dominant 
terms in a spherical harmonic expansion:8"1,8"2 

V = - 
kM 
R 

1 + ^/Mcosfl (B-2) 

where R is the magnitude of the position vector R (as in Section Il.d of Appendix A); <j> 
is the angle between the polar vector (R3 or z direction) and the position vector R; P2 

is the second-order Legendre polynomial of the first kind; a, J2 and kM are earth-related 
constants; and the origin of the coordinate system is at the Earth's center. The following 
(approximate) values of these constants will be used in the sequel:8"2 

kM = 3.986 x 105^ 

a = 6378 km 

J2 = .0010827 

B-l   Heiskanen, Weikko A. and Moritz, Helmut, Physical Geodesy, W. H. Freeman and Co., San Francisco, 
CA, 1967. 

B-2    Kaplan, Marshall H., Modern Spacecraft Dynamics & Control, John Wiley & Sons, Inc., New York, 
NY, 1976. 
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In what follows let x = i?i, y = R2, z = R3 and r = R. Then 

P2(cos <f>) = J(3 cos 2<j> + 1) = |(2 cos2 <j> - 1) + \ 

and since cos <f> = z/r it follows that 

P2(cos<f>)      3z2       1 

r2           2i ,4      2r2 ' 

Equation (B-2) can thus be rewritten as 

—e-**(£-yo}- 
Moreover, since Vr = R/r it follows that 

V ( M -      nR V
 I rn J  ~         rn+2 ' 

and thus that 

ÖV     -kMx     . _, 2 _ 
ox          rö 

"3 x      15z2x" 

2r5      2  r7. 

dV      -kMy             2 
-5- =  Ö «Mfl   J2 ay          rJ 

'3y      15 *V 
2r5      2   r7 

dV      -kMz     , ,,  , T 
-a- = 5 kMa* J2 oz          r6 

'32;     3 z      1 
7? + 2 r5       2 

5z3 

>  r7 

(B-3) 

(B-4) 

(B-5) 

Equations (B-3), (B-4), and (B-5) can be simplified by introducing the following variables 

CM = J— 

G-$ + G.(£-l) 
and set of constants 

a0 = —kM 

a2 = — § a2 J2 • 

Thus equations (B-3), (B-4), and (B-5) can be rewritten as 

dv    r     , r 
ox 

— = G2 = y-GB ay 

?f = G3 = z-(GB-2GA), 
oz 

(B-6) 

(B-7) 

B-4 



NSWCDD/TR-94/217 

in agreement with Section Il.d of Appendix A, where 

Finally, using the values of the Earth-related constants given previously in equations (B-6) 
and (B-7) and switching to engineering units (i.e., feet, feet per second, etc.) yields: 

a0 = -.1407643 x 1017 

a2 = -.71110 xlO12, 

in agreement with the values found in Sections Il.a and Ill.a of Appendix A. 
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